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Most work on supersingular potentials has focused on the study of the ground 
state. In this paper, a global analysis of the ground and excited states for the 
successive values of the orbital angular momentum of the supersingular plus 
quadratic potential is carried out, making use of centrifugal plus quadratic potential 
eigenfunction bases. First, the radially nodeless states are variationally analyzed 
for each value of the orbital angular momentum using the corresponding functions 
of the bases; the output includes the centrifugal and frequency parameters of the 
auxiliary potentials and their eigenfunction bases. In the second stage, these bases 
are used to construct the matrix representation of the Hamiltonian of the system, 
and from its diagonalization the energy eigenvalues and eigenvectors of the 
successive states are obtained. The systematics of the accuracy and convergence 
of the overall results are discussed with emphasis on the dependence on the 
intensity of the supersingular part of the potential and on the orbital angular 
momentum. 

1. I N T R O D U C T I O N  

Since the papers by Klauder (1973), Ezawa  et  al. (1975), and Detwiler 
and Klauder (1975) singular potentials have been receiving increased interest 
(Harrell, 1977; Klauder, 1978; de Llano, 1981; Znojil, 1982, 1992; Kill- 
ingbeck, 1982; Ullah, 1986; Aguilera-Navarro et  al.,  1990, 1992; Aguilera- 
Navarro and Guardiola,  1991; Aguilera-Navarro and Ullah 1994; Fernfindez, 
1991; Guardiola and Ros, 1992; Solano-Torres et  al., 1992). These potentials 
are present in a number  o f  situations which are mathematically challenging 
and physically interesting. The analysis o f  the supersingular plus quadratic 
potential A i r  4 4- r 2 carried out in Aguilera-Navarro and Ullah (1994) was 
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restricted to the study of the ground state as a function of the intensity 
parameter A. The same restriction is shared by other studies of supersingular 
potentials (Aguilera-Navarro et al., 1990, 1992; Aguilera-Navarro and 
Guardiola, 1991; Aguilera-Navarro and Ullah, 1994; Fern~-adez, 1991; 
Guardiola and Ros, 1992; Solano-Torres et al., 1992; Znojil, 1992). In order to 
have a better understanding of the effects of the presence of the supersingular 
components of the potential in such systems, it is necessary to investigate 
not only the ground state, but also the radially and rotationally excited states. 

In this paper a global analysis of the supersingular plus quadratic poten- 
tial is formulated by using the bases of eigenfunctions of centrifugal plus 
quadratic potentials, leading to a reliable description of the vibrational-rota- 
tional energy spectra of the quantum system. In Section 2 the variational 
analysis of the radially nodeless states for successive values of the orbital 
angular momentum is carried out using a trial function which is the product 
of a power of the radial coordinate and a Gaussian function. In Section 3 
the general solution is formulated in matrix form using the bases of eigenfunc- 
tions of the centrifugal plus quadratic potentials with intensity parameters 
provided by the analysis of the previous section. Section 4 consists of a 
discussion of the specific results of this work and also of possible ways of 
extending the present method to the study of other systems with supersingu- 
lar potentials. 

2. VARIATIONAL ANALYSIS OF RADIALLY NODELESS 
STATES FOR SUCCESSIVE VALUES OF ORBITAL 
ANGULAR MOMENTUM 

The radial Schr6dinger equation for the supersingular plus quadratic 
potential 

( 1 dr2  d + l ( l+  1) a ] 
--~-dr dr r 2 + -~ + r2 ~(r) = Ed~(r) (1) 

for the successive values l = 0, l, 2 . . . .  of the orbital angular momentum 
is the subject of analysis in this section and the next one. Here the variational 
analysis is restricted to the radially nodeless states by using trial functions 
of the form 

d, Jtrial(r ) = NrXe -c~ (2) 

where h and to are identified as the centrifugal and harmonic variational 
parameters, respectively. The normalization factor N is determined by the 
condition 
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1 = d r  r 2 I~l/trial(r ) [ 2 NZF( h + 3/2) 
= 2to~+3/2 (3) 

The energy expectation value from equations (1) and (2) can be evaluated 
immediately and reduced to 

E(to, k ) = ( l + t o l ( h + 3 1  h ( h +  1 ) - 1 ( 1  + 1) 
- k + 1/2 to ( 4 )  \w / \  ,./ 

Ato 2 + - -  
h 2 - 1 /4  

Its minimization with respect to the parameters to and h leads to the two 
simultaneous equations 

0 

and 

h(h + 1) - l(l + 1) + 2Ato 
k + 1/2 h 2 -  1/4 

(5) 

bE 1 h(h + 1) - l(l + 1) 2Ato2h 
Oh 0 - - t o +  to (6) to (h + 1/2) 2 (k 2 - 1/4) 2 

The elimination of the terms in A from equations (5) and (6) leads in turn 
to the following relationship between the variational parameters: 

X/8 12h2 + 8h + 1 
t o =  k z + 4 k + 4 1 ( l +  1 ) +  1 (7) 

which will prove to be very useful in interpreting the highly rotationaUy 
excited states of the system. In general, the numerical solution of equations 
(5) and (6) for chosen values of the supersingular potential intensity A and 
the orbital angular momentum l is readily accomplished, giving the values 
of to and k and the corresponding variational energy, equation (4), for the 
respective radially nodeless states. Table I presents a sample of such values 
for A = 0.001, 0.01, 0.1, 1, 10, 100, 1000 and the lowest successive values 
of I. Certain general trends can be identified in the variations of the potential 
parameters A and I of equation (1) and of the variational parameters h and 
to of equation (2). For a given value of A, the values of h are larger than the 
corresponding values of l, reflecting that in the trial function of equation (2) 
the takeoff for r ---> 0 is slower than the usual r t, due to the dominance at 
small distances of the supersingular potential over the centrifugal potential 
associated with the rotational contribution to the kinetic energy. For small 
enough values of l, the values of h are substantially different from them, and 
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Table I. Supersingular Potential Intensity A, Orbital Angular Momentum l, Centrifugal 
Parameter h, Frequency Parameter ~ and Variational Energy of Radially Nodeless 

States E(to, h), Equation (4) 

A l k to E (~  h) 

0.001 0 0.55635609067 1.26785711749 3.21682779558 
1 1.00459902364 1.00130941428 5.00132691491 
2 2.000577471 64 1.00008881969 7.00026660823 
3 3.00021711826 1.00002285306 9.00011427982 
4 4.00011337402 1.00000906968 l 1.0000634908 
5 5.00006958338 1.00000448919 13.0000404037 

0.01 0 0.66893658381 1.27101542953 3.33111301651 
l 1.04115007402 1.01139689904 5.01276501609 
2 2.00574742837 1.00088203464 7.00266085302 
3 3.00216897323 1.00022816411 9.00114226825 
4 4.00113332150 1.00009064198 11.0006347955 
5 5.00069571314 1.00004487886 13.0004040018 

0.1 0 0.97543301926 1.27119792653 3.66428055431 
1 1.24757267867 1.05906902541 5.10280260830 
2 2.05497948090 1.00826157071 7.02611295409 
3 3.021473 ! 5822 1.00224580616 9.01137032809 
4 4.01129160365 1.00090097563 11.0063367394 
5 5.00694509280 1.00044748703 13.0040365464 

1 0 1.73245599570 1.26207150656 4.54354754654 
1 1.91370184920 1.14510778231 5.57795364854 
2 2.41194071070 1.05348925198 7.22729215901 
3 3.19657363650 1.01952166851 9.10901325038 
4 4.10903189307 1.00850691627 11.0622931434 
5 5.06828604990 1.00434963869 13.0400254838 

50 50.0006081338 1.00000404071 103.000400037 
10 0 3.46483253803 1.24818957799 6.62988715565 

1 3.57318766034 1.20719477639 7.24071018439 
2 3.82286404480 1.14736889950 8.36190509563 
3 4.24931380470 1.09356485978 9.84321738516 
4 4.85239544035 1.05656402987 11.5454312668 
5 5.59416818222 1.03440084229 13.3718186570 

50 50.0060805430 1.00004039740 103.004000075 
0 7.27421543241 1.23732934528 11.2754389358 
1 7.33312772605 1.22663095873 11.5911786351 
2 7.45582321997 1.20697279756 12.2076838419 
3 7.65067105680 1.18135394107 13.0973086041 
4 7.92699881655 1.15323730733 14.2237964169 
5 8.29200840238 1.12571751989 15.5471338767 

50 50.0607266241 1.00040301280 103.039971557 
0 15.5278820747 1.23099105958 21.3740874828 
1 15.5577070076 1.22852456861 21.5273970556 
2 15.6179197 ! 56 1.22369033849 21.8322499808 
3 15.7096047927 1.21667910763 22.2851808516 
4 15.8342877126 1.20776058997 22.8811554541 
5 15.9938173908 1.19726525746 23.6137572037 

50 50.5995738825 1.00393685865 103.396842644 

100 

1000 
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the values of to are appreciably different from 1 [which is the frequency in 
the harmonic potential of equation (1)]; as larger values of I are considered, 
the values of h get closer to them from above, and the values of to also 
approach 1 from above. The usefulness of equation (7) enters here, since it 
shows that in fact as k ---> l, co ---> 1. The latter situation indicates that the 
effect of the supersingular parameter becomes less important as the centrifugal 
potential becomes larger. Correspondingly, the energy eigenvalues approach 
the corresponding values of the harmonic oscillator 2l + 3 from above for 
large enough values of I. If the supersingular potential is taken as a perturbation 
on the harmonic potential, then for small (large) values of A the situation of 
the previous sentences appears for smaller (larger) values of l, as it can be 
checked from the entries of Table I for the successive values of A. 

3. MATRIX REPRESENTATION AND SOLUTION IN 
CENTRIFUGAL PLUS QUADRATIC POTENTIAL 
EIGENFUNCTION BASES 

Two questions can be asked about improving and extending the results 
of Section 2: Can the variational analysis of the radially nodeless states be 
improved? Can such an analysis be extended to states with radial excitations? 
Both questions are addressed in this section, and a unified affirmative answer 
is given. Indeed, the answer to the first question requires a trial function 
more flexible than the one of equation (2), the additional flexibility coming 
from functions orthogonal to that one; the incorporation of such functions 
provides simultaneously the key to answer the second question. 

To wit, the Schrtdinger equation for the centrifugal plus quadratic 
potential 

[ 1 d r2d l(l+ 1) B ] 
--r'2 drr drr + r - '----5~ + r-~ + toZr2 dp.a(r) = E~ (8) 

has the exact eigenfunctions 

+.x(r) = N.xrXe-~ h + 3/2, tor 2) (9) 

where 

K(K + 1) = l(l + 1) + B (10) 

and M is the confluent hypergeometric function reducing to a polynomial of 
degree n = 0, 1, 2 . . . .  of its argument. In particular, the trial function of 
equation (2) belongs to the set of equation (9) for n = 0. The energy eigenval- 
ues of equation (8) are 

E~215 = (4n + 2h + 3)to (11) 
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The solution of equation (1) for states with any radial excitation and any 
orbital angular momentum can be obtained by using the trial functions of 
the form 

N 

0va(r) = ~] av,~b,x(r) (12) 
n=0 

i.e., superpositions of the orthonormal functions of equation (9). For given 
values of the potential parameters A and l in equation (1), the analysis of 
Section 2 provides the values of the corresponding variational parameters 
and h of the basis of functions of equation (9) as well as the associated 
frequency and centrifugal potential intensities of equation (8), the latter via 
equation (10). 

The substitution of the trial function of equation (12) in equation (1) 
followed by the projection on the successive states of the basis of equation 
(9) leads to the matrix representation of equation (1). In fact, the functions 
of the basis of equation (9) are normalized to unity, 

NZn! F Z ( h  + 3/2) 
1 = (d~. x, d~.x) = 2cox+312F( n + h + 3/2) (13) 

The Hamiltonian H of equation (1) can be written as the Hamiltonian H0 of 
equation (8) plus the difference between the two Hamiltonians 

H = H0 + (1 - co2)r 2 - h(h + 1) - l(l + 1) A (14) 
r 2 + r- 7 

Then the matrix form of equation (1) becomes (n, m = 0, 1, 2 . . . .  ) 

(E~ - E)~,~ + (1 - toZ)(nlr21m) - [h(}k + 1) -- l(l + 1)] 

X(n-~[m)+a(n-~m I = 0  (15) 

where 

(nlr21n) = (2n + h + 3/2)/to 

n h + 1/2 

n n (h + 3/2)(h / - 1/4) 

(16)  

(17) 

(18) 
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are the diagonal matrix elements, 

(nlr21m) = _ 1  x/m(n + h + 
tO 

(..~ } / m , [ ' ( n + h +  
n m = % ] ~ . I F - - ~ + X +  

and 

3/2) Bn,m-t 

3/2) tO 

3/2) h + 1/2 

(19) 

(20) 

{ 41} n m = %/~ ~ + X + 3/2) (-h"+- -3 /-'~-X ~ -- U'4") to2 (21) 

give the values of the nondiagonal ones for rn > n. The matrix elements 
with m < n are incorporated by using the symmetry property of the matrix. 

The solution of equation (15) as a secular equation for an N X N matrix 
gives upper limits to the energy eigenvalues of the lowest N states for the 
chosen orbital angular momentum. The larger the matrix, the closer one can 
expect such limiting values to be to the exact energy eigenvalues, especially 
for the states with lower radial excitations. The diagonalization of such 
matrices also provides the corresponding eigenvectors, i.e., the coefficients 
avn in equation (12). 

The numerical results presented through Table II illustrate the conver- 
gence and accuracy of the variational energies for the lowest vibrational 
rotational states, as obtained for different sizes N x N of the diagonalized 
matrices, and for different values of the intensity A of the supersingular 
potential. It can be seen that the convergence is faster (slower) for larger 
(smaller) values of A, as indicated by the smaller (larger) values of N needed 
to obtain the lowest energy eigenvalues with a certain number of significant 
digits (we worked out the numerical calculations with 12 significant digits; 
however, for the sake of space, Table II displays only seven). The energy 
eigenvalues of the ground state v = 0, l = 0 can be compared with those of 
Aguilera-Navarro and Ullah (1994) and seen to coincide, admitting that the 
convergence in that work is faster. The advantage of the present work consists 
in the simultaneous determination of the vibrationally v = 1, 2, 3 . . . .  and 
rotationally l = 0, 1, 2 . . . .  excited states. For the sake of space, Table II 
illustrates only the states with l = 0, 1, 2, 3 for A = 0.1, 1, 10, 100, 1000. 
However, our method and programs can obviously give the energies of the 
corresponding states for other values of A. In particular, for A = 1 and I = 
4, 5 . . . .  and also A = 1000 and l = 1000 . . . .  it can be verified that the 
energy levels are slightly shifted upward from their harmonic oscillator values 
4v + 21 + 3, illustrating that the effect of the supersingular potential on so 
high angular momentum states is very small; the fast convergence in the 
evaluation of such states can also be contrasted with the slower convergence 
for the lower angular momentum states. These trends are directly connected 
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Table II. First Four Lowest Energies a Evt Obtained from the Diagonalization of the 
Hamiltonian (14) in the N-Dimensional Space Spanned by the Basis Functions (9), 

for Some Values of the Supersingular Potential Intensity A 

A = 0 , 1  A = I  

N Eoo Eio E2o E3o Eoo Eio E2o E3o 

4 3.634708 7.863175 12.11053 16.85972 4.528807 8.915767 13,25423 18.27755 
10 3.632051 7.859925 12.02653 16.16506 4.518518 8.895405 13.17149 17.40108 
50 3.592018 7.793466 11.93500 16.04811 4.494356 8.846038 13.09223 17.28629 

100 3.578996 7.771997 11.90575 16.01127 4.494241 8.845799 13.09184 17.28572 
200 3.575799 7.766710 11.89853 16.00216 4.494184 8.845686 13.09167 17.28547 
250 3.575681 7.766515 11.89827 16.00182 4.494179 8.845676 13.09165 17.28545 
300 3.575665 7.766488 11.89823 16.00177 4.494178 8.845673 13.09165 17.28544 

Eol Ell E21 E31 Eot Ell E2j E31 

4 5.101363 9.166384 13.22725 17.33071 5.573287 9.808259 14.01163 18.49015 
10 5.101081 9.165692 13.22499 17.28114 5.568834 9.797886 13.98613 18.15295 
50 5.097109 9.155956 13.20802 17.25552 5.559268 9.773711 13.94213 18.08335 

100 5.095784 9.152747 13.20251 17.24735 5,559181 9.773491 13.94173 18.08271 
150 5.095444 9.151924 13.20110 17.24526 5.559175 9.773476 13.94170 18.08267 
200 5.095339 9.151672 13.20067 17.24462 5.559170 9.773463 13.94168 18.08263 

Eo2 El2 E22 E32 Eo2 El2 E22 E32 

4 7.026096 11.04053 15.05478 19.07023 7.226741 11.33002 15.42606 19.57042 
10 7.026075 11.04047 15.05466 19.06873 7.225815 11.32730 15.42069 19.50927 
50 7.025991 11.04018 15.05401 19.06755 7.224316 11.32225 15.40951 19.48883 

100 7.025971 11.04011 15.05386 19.06727 7.224288 11.32215 15.40929 19.48845 
150 7.025965 11.04009 15.05382 19.06719 7.224288 11.32215 15.40929 19.48844 
200 7.025963 11.04008 15.05380 19.06716 7.224288 11.32215 15.40929 19.48844 

Eo3 El3 E23 E33 Eo3 El3 E23 E33 

4 9.011370 13.01638 17.02137 21.02645 9.108956 13.15354 17.19693 21.24754 
10 9.011367 13.01637 17.02135 21.02645 9.108808 13.15302 17.19582 21.23773 
50 9.011364 13.01636 17.02131 21.02624 9.108662 13.15239 17.19414 21.23417 
80 9.011364 13.01635 17.02131 21.02624 9.108659 13.15237 17.19411 21.23410 

A = 10 A = 100 

N Eoo Elo E2o E3o Eoo Eio E2o E3o 

4 6.623194 11.18473 15.64570 20.86153 11.27130 15.97551 20.57437 25.80266 
10 6.609923 11.14771 15.55647 19.89742 11.26516 15.94779 20.50880 24.99076 
50 6.606628 11.13752 15.53430 19.85631 11.26508 15.94731 20.50693 24.98516 

I00 6.606623 11.13751 15.53426 19.85625 11.26508 15.94731 20.50693 24.98516 

Eol Etl E21 E31 Eol Ett E21 E3t 

4 7.235960 11.71475 16.11249 21.08018 11.58738 16.26208 20.83830 25.99834 
10 7.226013 11.68568 16.04723 20.35502 11.58168 16.23621 20.77767 25.24498 
50 7.223524 11.67739 16.02829 20.31865 11.58162 16.23574 20.77586 25.23948 
80 7.223520 11.67738 16.02827 20.31861 11.58162 16.23574 20.77586 25.23948 

100 7.223520 11.67738 16.02826 20.31861 11.58162 16.23574 20.77586 25.23948 
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N A = 10 A = 100 

Eo'z El2 E22 E32 E02 El2 E22 E32 

4 8.359469 12.71439 17.01900 21.64803 12.20447 16.82474 
10 8.353878 12.69649 16.98150 21.23269 12.19960 16.80219 
50 8.352485 12.69119 16.96827 21.20554 12.19954 16.80176 
80 8.352484 12.69118 16.96826 21.20551 12.19954 16.80176 

E03 El3 E23 E33 Eo3 El3 

4 9.842248 14.08045 18.29455 22.65344 13.09480 17.64362 
10 9.839807 14.07164 18.27614 22.46330 13.09094 17.62527 
50 9.839232 14.06906 18.26891 22.44709 13.09089 17.62489 
80 9.839231 14.06906 18.26890 22.44708 13.09089 17.62489 

21.35907 26.39561 
21.30703 25.74658 
21.30532 25.74130 
21.30532 25.74130 

E23 E33 

22.12257 27.00246 
22.08079 26.48231 
22.07924 26.47740 
22.07924 26.47740 

A = 1000 

N E0o EIO E2o E3o Eo2 El2 E22 E32 

4 21.37133 26.16834 30.88821 36.02221 21.82965 26.60243 
10 21.36946 26.15319 30.85142 35.48293 21.82788 26.58806 
50 21.36946 26.15318 30.85138 35.48270 21.82788 26.58805 
80 21.36946 26.15318 30.85138 35.48270 21.82788 26.58805 

EOl Ell E21 E31 Eo3 El3 

4 21.52469 26.31351 31.02654 36.14617 22.28273 27.03222 
10 21.52286 26.29863 30.99044 35.61663 22.28106 27.01858 
50 21.52286 26.29862 30.99040 35.61639 22.28106 27.01858 
80 21.52286 26.29862 30.99040 35.61639 22.28106 27.01858 

31.30202 36.39355 
31.26724 35.88294 
31.26721 35.88271 
31.26721 35.88271 

E23 E33 

31.71227 36.76327 
31.67938 36.27975 
31.67934 36.27952 
31.67934 36.27952 

av is the number of radial nodes. 

with the corresponding trends identified in Section 2; in the limit h ---> l, to 
--> 1 of equation (8), the difference between the Hamiltonians in equation 
(14) tends to zero. 

4. DISCUSSION 

The quantum mechanical solution of the supersingular plus quadratic 
potential was formulated in Section 3 through the construction and diagonal- 
ization of its Hamiltonian matrix, equation (15), in the bases of eigenfunctions 
of the appropriate centrifugal plus quadratic potentials, equation (9). The 
power and frequency parameters of the latter, h and to, were determined in 
Section 2 through the preliminary variational analysis of the radially nodeless 
states for each value of the orbital angular momentum l. Numerical results 
from the preliminary and more complete analysis for the energy eigenvalues 
of the respective states were presented through Tables I and II, illustrating 
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their global dependence on the intensity A of the supersingular component 
of the potential and on the orbital angular momentum l. Specifically, the 
supersingular component affects the states with lowest values of I the most; 
for large enough values of l the energy levels are slightly shifted upward 
from those of the harmonic oscillator, because the centrifugal effect practically 
nullifies the effect of the supersingular component. The convergence in the 
evaluation of the energy eigenvalues is fast (slow) for large (small) values 
of the intensity A, i.e., in the strong (weak) coupling regime. 

The asymptotic form of the functions in the bases of equation (9) is 
determined by the quadratic component of the potential. The method of 
solution of this work can be adapted for the study of other potentials with 
supersingular and well-behaved components, the former determining the 
behavior of the wavefunction as r ---> 0 and the latter as r ---> ~. Systematic 
work is being carded out for the investigation of other supersingular potentials. 
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